Korea Laboratory Accreditation Scheme

KOLAS 공인교정기관 인정서

(주)테솔

인 정 번 호: KC21-383

법 인 등 록 번 호

131111-0166403

(또는 고유번호)

경기도 용인시 기흥구 흥덕1로 13 (흥덕IT밸리 지하주차동 P102A호)

사 업 장 소 재 지 :

최 초 인 정 일 자 : 2021년 02월 03일

인 정 유 효 기 간 : 2025년 02월 03일 ~ 2029년 02월 02일

인정분야 및 범위 : 별첨

발 햇 **일** : 2024년 11월 27일

상기 기관을 국가표준기본법 제14조, 적합성평가 관리 등에 관한 법률 제8조 및 KS Q ISO/IEC 17025:2017 에 의거하여 KOLAS 공인교정기관으로 인정합니다. 또한 ISO-ILAC-IAF 공동성명에 언급된 바와 같이 인정된 분야 및 범위에 대한 기술적 능력과 교정기관의 품질경영시스템이 적절함을 인정합니다.

ISO/IEC 17025:2017 와 KS Q ISO/IEC 17025:2017 에 의한 공인인정범위

㈜테솔

경기도 용인시 기흥구 흥덕1로 13 (흥덕IT밸리 지하주차동 P102A호) 전화 : 031-713-5988 팩스 : 031-713-5983, e-mail : sales@tessol.com

교 정

유효기간 만료일 : 2029. 02. 02. 인정번호 : KC21-383

KOLAS 평가결과에 의해 다음의 교정수행에 대하여 공인됩니다.

분류번호	교정항목	현장 교정	분류번호	교정항목	현장 교정	분류번호	교정항목	현장 교정
204. 압력			503. 습도					
20406	절대압계; 다이얼, 디지털, 기록계 등	Y	50302	상대습도 습도계; 고분자 박막, 모발 등	Y			
20408	연성 압력계	Y	50304	온·습도 기록계 ; 자기온습도기록	N			
20409	차압계; 디지털, 다이얼 포함	Y	50304	계 등	IN			
20411	게이지압용 압력계; 다이얼, 디지털, 기록계 등	Y	50305	노점/상대습도 변환기 습도 발생장치; 이압력식/이온	N			
20412	압력 변환기/전송기	Y	50306	도식/분류식 습도발생장치,	Y			
20413	다이알형 진공계	Y	1	항온항습기 등				
401. 직류	7 7 2 0 2 0 11							
40101	직류 전류계	Y						
40103	직류 전압/전류 교정기	Y	1					
40104	전기식온도교정기(센서미포함)	Y						
40112	직류 전압계	Y						
403. 교류	및 교류전력		1					
40301	교류 전류계	Y	1					
40302	클램프형 전류계/전압계	Y	1					
40311	교류 전력계	Y	1					
40318	교류 전압계/실효치	Y	1					
404. 기타	직류 및 저주파측정		1					
40403	멀티미터 교정기, 다기능 교정기	Y	1					
40416	누설전류 시험기	Y	1					
40419	아날로그/디지털 멀티미터	Y	1					
40421	파형측정기	Y						
40424	전압 전류 기록계	Y						
501. 접촉	식 온도]					
50101	온도 발생장치; 오븐, 액체항온조, 빙점조, 드라이블럭교정기 등	Y						
50102	온도 지시계;지시/기록/조절계, 온도 교정기 등	Y						
50104	저항식 온도계; 백금저항온도계, 측온저항체, 써미스터 등	N						
50105	열팽창식 온도계 ; 바이메탈 온도계,기체 또는 액체 충만식 온도계 등	Y						
50107	온도 변환기	Y	1					
주 서			•		•			•

주석

- 1. 위 기관은 고정표준실교정 및 현장교정 서비스를 제공한다.
- 2. 현장교정 서비스를 제공하는 기관은 "KOLAS-SR-007 현장 시험 및 교정 수행을 위한 추가기술요건"을 만족한다.
- 3. 인정범위 상에 "Y"가 표기된 항목은 현장교정 서비스가 가능하고, "N"이 표기된 항목은 현장교정 서비스가 불가능하다.
- 4. 측정불확도는 포함인자 k=2를 사용하며, 신뢰수준 약 95 %를 나타내는 확장불확도로 표현되며 정상적인 조건에서 고객에 제공될 수 있는 최소의 측정불확도를 의미한다.
- 5. 일반적으로, 교정성적서에 기재된 측정불확도는 교정용 표준기, 고객의 장비와 교정환경 등의 영향 때문에, 공인인정범위에 기재된 측정불확도보다 더 크게 표현됨을 유의하여야 한다.

204. 압력

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
절대압계; 다이얼, 디지털, 기록계 등	20406			디지털 압력조절기
		(5 ~ 700) kPa abs	1.1×10^{-3}	/TS-CI-P06
		(700 ~ 7 000) kPa abs	1.2×10^{-3}	
연성압력계	20408			디지털 압력조절기
		(-100 ~ 0) kPa	3.0×10^{-3}	/TS-CI-P08
		(0 ~ 7 000) kPa	1.2×10^{-3}	
차압계;디지털,다이얼 포함	20409			디지털 압력조절기
		(0 ~ 14) kPa	1.4×10^{-3}	/TS-CI-P09
		(14 ~ 7 000) kPa	2.4×10^{-3}	
게이지압용 압력계; 다이얼, 디지털,	20411			공압 분동식 압력계
기록계 등		(0 ~ 7 000) kPa	1.4×10^{-4}	디지털 압력조절기
				/TS-CI-P11
압력 변환기/전송기	20412			공압 분동식 압력계
절대압		(5 ~ 700) kPa abs	1.7×10^{-3}	디지털 압력조절기
		(700 ~ 7 000) kPa abs	1.3×10^{-3}	/TS-CI-P12
게이지압		(0 ~ 7 000) kPa	5.7×10^{-4}	
다이얼형 진공계	20413			디지털 압력조절기
		(-100 ~ 0) kPa	3.0×10^{-3}	/TS-CI-P13

401. 직류

401. 석류 측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
직류 전류계	40101		(근의 근 즉 30 %)	
직류전 튜	<u>.</u>	(0 ~ 100) μA	10 nA	미터 교정기, 전류 변환기
		(0.1 ~ 1) mA	0.05 µА	/TS-CI-E101
		(1 ~ 5) mA	0.3 μΑ	
		(5 ~ 10) mA	0.4 μΑ	
		(10 ~ 50) mA	3 µА	
		(50 ~ 100) mA	6 µА	
		(100 ~ 500) mA	0.06 mA	
		(0.5 ~ 1) A	0.10 mA	
		(1 ~ 5) A	1.4 mA	
		(5 ~ 10) A	2.6 mA	
		(10 ~ 20) A	3 mA	
		(20 ~ 60) A	13 mA	
		(60 ~ 100) A	16 mA	
직류 전압/전류 교정기 지르고요	40103	(+)		디지털 멀티미터
직류전입		(0 ~ 100) mV	1.6 µV	/TS-CI-E103
		(0.1 ~ 1) V	9 μV	/ 13-C1-E103
		(0.1 × 1) V (1 ~ 10) V	0.08 mV	
		(10 ~ 100) V	0.9 mV	
		(100 ~ 1 000) V	11 mV	
		(100 1 000) (II mv	
		(-)		
		(0 ~ 100) mV	2.3 μV	
		(0.1 ~ 1) V	12 µV	
		(1 ~ 10) V	0.11 mV	
		(10 ~ 100) V	1.8 mV	
		(100 ~ 1 000) V	11 mV	
직류전튜	-	(+)		
		(0 ~ 100) μA	13 nA	
		(0.1 ~ 1) mA	44 nA	
		(1 ~ 10) mA	0.48 μA	
		$(10 \sim 100) \text{ mA}$	7.4 µA	
		(0.1 ~ 1) A	0.23 mA	
		(1 ~ 10) A	3.7 mA	
		(10 ~ 30) A	20 mA	
]		l

401. 직류

401. 식듀		1	측정불확도	
측정량/장비	분류번호	교정범위	(신뢰수준 약 95 %)	사용표준/측정방법 등
직류 전압/전류 교정기	40103			
직류전류		(-)		디지털 멀티미터
		(0 ~ 100) μA	18 nA	/TS-CI-E103
		(0.1 ~ 1) mA	86 nA	
		(1 ~ 10) mA	0.83 μΑ	
		(10 ~ 100) mA	12 µA	
		(0.1 ~ 1) A	0.28 mA	
		(1 ~ 10) A	5.2 mA	
		(10 ~ 30) A	20 mA	
전기식 온도 교정기(센서미포함)	40104			
출력 직류전압		(+)		디지털 멀티미터,
		(0 ~ 100) mV	1.6 µV	미터 교정기
		(0.1 ~ 1) V	8.6 µV	/TS-CI-E104
		(1 ~ 10) V	76 μV	
		(10 ~ 100) V	0.90 mV	
		(-)		
		(0 ~ 100) mV	2.3 μV	
		$(0.1 \sim 1) \text{ V}$	12 µV	
		(1 ~ 10) V	0.11 mV	
		(10 ~ 100) V	1.8 mV	
출력 직류전류		(+)		
		(0 ~ 8) mA	0.8 μΑ	
		(8 ~ 20) mA	1.1 µA	
		(20 ~ 24) mA	6.2 µA	
		(24 ~ 100) mA	7.3 µA	
		(-)		
		(0 ~ 20) mA	1.1 μΑ	
		(20 ~ 100) mA	12 µA	
· 축과 기위		(0 - 100) 0	1 1 0	
출력 저항		$(0 \sim 100) \Omega$ $(100 \sim 400) \Omega$	$1.1~\text{m}\Omega$ $5.9~\text{m}\Omega$	
		$(0.4 \sim 1) \text{ k}\Omega$	11 mΩ	
		$(1 \sim 4) \text{ k}\Omega$	0.05 Ω	
		(4 ~ 10) kΩ	0.2 Ω	
				l

401. 직류

04 $(-8.824 \sim 74.868) \text{ mV}$ $(0 \sim 17.136) \Omega$ $(17.136 \sim 100) \Omega$ $(100 \sim 1.000) \Omega$ $(1.000 \sim 3.137.08) \Omega$ (\pm)	(신뢰수준 약 95 %) 2.1 μV 0.81 mΩ 1.1 mΩ 11 mΩ 0.05 Ω	디지털 멀티미터, 미터 교정기 /TS-CI-E104
$(-8.824 \sim 74.868) \text{ mV}$ $(0 \sim 17.136) \Omega$ $(17.136 \sim 100) \Omega$ $(100 \sim 1000) \Omega$ $(1000 \sim 3137.08) \Omega$ (\pm)	0.81 mΩ 1.1 mΩ 11 mΩ	미터 교정기
$(0 \sim 17.136) \Omega$ $(17.136 \sim 100) \Omega$ $(100 \sim 1000) \Omega$ $(1000 \sim 3137.08) \Omega$ (\pm)	0.81 mΩ 1.1 mΩ 11 mΩ	미터 교정기
$(17.136 \sim 100) \Omega$ $(100 \sim 1000) \Omega$ $(1000 \sim 3137.08) \Omega$ (\pm)	1.1 mΩ 11 mΩ	
$(17.136 \sim 100) \Omega$ $(100 \sim 1000) \Omega$ $(1000 \sim 3137.08) \Omega$ (\pm)	1.1 mΩ 11 mΩ	/TS-CI-E104
$(100 \sim 1\ 000)\ \Omega$ $(1\ 000 \sim 3\ 137.08)\ \Omega$ (\pm)	11 mΩ	
(1 000 ~ 3 137.08) Ω (±)		
(±)	0.05 Ω	
(0 100) 11		
$(0 \sim 100) \text{ mV}$	2 μV	
(0.1 ~ 1) V	0.01 mV	
(1 ~ 3) V	0.02 mV	
(3 ~ 10) V	0.1 mV	
(10 ~ 30) V	0.3 mV	
(30 ~ 100) V	1 mV	
(100 ~ 300) V	0.01 V	
(±)		
(0 ~ 4) mA	0.3 µА	
(4 ~ 8) mA	0.4 μΑ	
(8 ~ 12) mA	0.9 µА	
(12 ~ 16) mA	1.0 μΑ	
(16 ~ 20) mA	1.1 µA	
(20 ~ 24) mA	1.3 µA	
(24 ~ 30) mA	1.5 µA	
(30 ~ 100) mA	5 µА	
(0 ~ 10) Ω	0.74 mΩ	
(10 ~ 100) Ω	1.4 mΩ	
(100 ~ 1 000) Ω	12 mΩ	
(1 ~ 10) kΩ	0.71 Ω	
(-8.824 ~ 13.421) mV	0.6 μV	
	1.0 μV	
	$(4 \sim 8) \text{ mA}$ $(8 \sim 12) \text{ mA}$ $(12 \sim 16) \text{ mA}$ $(16 \sim 20) \text{ mA}$ $(20 \sim 24) \text{ mA}$ $(24 \sim 30) \text{ mA}$ $(30 \sim 100) \text{ mA}$ $(0 \sim 10) \Omega$ $(10 \sim 100) \Omega$ $(100 \sim 1000) \Omega$	$(4 \sim 8) \text{ mA}$ 0.4 μA 0.9 μA

401. 직류

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
전기식 온도 교정기(센서미포함)	40104			디지털 멀티미터,
				미터 교정기
입력 RTD 저항		0 ~ 17.136 Ω	$1~\text{m}\Omega$	/TS-CI-E104
		$(17.136 \sim 100) \Omega$	$2~\text{m}\Omega$	
		(100 ~ 1 000) Ω	0.02 Ω	
		(1 000 ~ 3 137.08) Ω	0.06 Ω	
직류 전압계	40112			
직류전압		(±)		미터 교정기
		$(0 \sim 20) \text{ mV}$	0.6 μV	/TS-CI-E112
		(20 ~ 100) mV	1.2 µV	
		(0.1 ~ 1) V	6 μV	
		(1 ~ 10) V	0.04 mV	
		(10 ~ 100) V	0.6 mV	
		(100 ~ 1 000) V	8 mV	
		,		

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
교류 전류계	40301		(
교류 전	7	60 Hz ~ 1 kHz		미터 교정기, 전류 변환기
		10 μΑ	0.04 μΑ	/TS-CI-E301
		(10 ~ 100) μA	0.05 μΑ	
		(0.1 ~ 1) mA	0.2 μA	
		(1 ~ 10) mA	2 μΑ	
		(10 ~ 100) mA	0.02 mA	
		(0.1 ~ 1) A	0.4 mA	
		(1 ~ 3) A	1.1 mA	
		(3 ~ 10) A	3 mA	
		60 Hz		
		(10 ~ 20) A	22 mA	
		(20 ~ 100) A	0.04 A	
		(60 ~ 100) Hz		
		(10 ~ 20) A	33 mA	
		(20 ~ 100) A	0.06 A	
		100 Hz ~ 1 kHz		
		(10 ~ 20) A	0.11 A	
		(20 ~ 100) A	0.18 A	
클램프형 전류계/전압계	40302			
직류전	하	(0 ~ 200) mV	0.01 mV	미터 교정기, 전류 변환기,
		(200 ~ 600) mV	0.1 mV	전류코일
		(0.6 ~ 6) V	1 mV	/TS-CI-E402
		(6 ~ 60) V	0.01 V	
		(60 ~ 600) V	0.1 V	
		(600 ~ 1 000) V	1 V	
교류전	p}-	60 Hz ~ 1 kHz		
		(0.1 ~ 100) mV	0.02 mV	
		(100 ~ 200) mV	0.04 mV	
		(200 ~ 400) mV	0.1 mV	
		(400 ~ 600) mV	0.2 mV	
		(0.6 ~ 6) V	1 mV	
		(6 ~ 50) V	0.01 V	
		(50 ~ 60) V	0.02 V	

403. 교류 및 교류전력

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
클램프형 전류계/전압계	40302		, , , , , , , , , , , , , , , , , , , ,	
교류전압		60 Hz ~ 1 kHz		미터 교정기, 전류 변환기,
		(60 ~ 300) V	0.1 V	전류코일
		(300 ~ 600) V	0.2 V	/TS-CI-E402
		(600 ~ 1 000) V	1 V	
직류전류		(0 ~ 10) mA	0.02 mA	
		(10 ~ 20) mA	0.03 mA	
		(20 ~ 50) mA	0.06 mA	
		(50 ~ 100) mA	0.2 mA	
		(100 ~ 200) mA	0.3 mA	
		(200 ~ 300) mA	0.4 mA	
		(300 ~ 500) mA	0.6 mA	
		(0.5 ~ 1) A	2 mA	
		(1 ~ 3) A	4 mA	
		(3 ~ 10) A	0.02 A	
		(10 ~ 20) A	0.03 A	
		(20 ~ 50) A	0.06 A	
		(50 ~ 100) A	0.12 A	
		(100 ~ 200) A	0.4 A	
		(200 ~ 300) A	0.5 A	
		(300 ~ 400) A	0.7 A	
		(400 ~ 500) A	0.8 A	
		(500 ~ 600) A	1.1 A	
		(600 ~ 1 000) A	2 A	
		(1 000 ~ 2 000) A	4 A	
		CO Ha . 1 1-11-		
교류전류		60 Hz ~ 1 kHz	21	
		1 mA (1 ~ 5) mA	2 μA	
			6 µА	
		$(5 \sim 10) \text{ mA}$	0.02 mA	
		(10 ~ 20) mA	0.03 mA	
		(20 ~ 50) mA	0.06 mA	
		$(50 \sim 100) \text{ mA}$	0.2 mA	
		(100 ~ 200) mA	0.3 mA	
		(200 ~ 300) mA	0.4 mA	
		(300 ~ 500) mA	0.6 mA	
		(0.5 ~ 1) A	2 mA	
		(1 ~ 3) A	4 mA	

403. 교류 및 교류전력

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
클램프형 전류계/전압계	40302		(전되기 친 구 50 10)	
교류전		60 Hz ~ 1 kHz		미터 교정기, 전류 변환기,
		(3 ~ 5) A	7 mA	전류코일
		(5 ~ 10) A	0.02 A	/TS-CI-E402
		(10 ~ 20) A	0.03 A	
		60 Hz		
		(20 ~ 50) A	0.06 A	
		(50 ~ 100) A	0.13 A	
		(100 ~ 200) A	0.4 A	
		(200 ~ 300) A	0.5 A	
		(300 ~ 400) A	0.7 A	
		(400 ~ 500) A	0.8 A	
		(500 ~ 600) A	1.2 A	
		(600 ~ 1 000) A	2 A	
		(1 000 ~ 2 000) A	4 A	
		(2 000 ~ 5 000) A	9 A	
저	항	(0 ~ 100) Ω	0.01 Ω	
		(0.1 ~ 1) kΩ	0.1 Ω	
		(1 ~ 10) kΩ	1 Ω	
		(10 ~ 100) kΩ	0.01 kΩ	
		(0.1 ~ 1) MΩ	0.1 kΩ	
		(1 ~ 10) MΩ	1 kΩ	
교류 전력계	40311			
직류전	압	(0 ~ 6) V	0.1 mV	미터 교정기, 전류코일
		(6 ~ 60) V	1 mV	전류 변환기 / TS-CI-E311
		(60 ~ 600) V	0.01 V	
		(600 ~ 1 000) V	0.1 V	
교류전	압	(50 ~ 60) Hz		
		0.1 V	72 µV	
		(0.1 ~ 1.5) V	0.3 mV	
		(1.5 ~ 6) V	0.8 mV	
		(6 ~ 15) V	3 mV	
		(15 ~ 30) V	5 mV	
		(30 ~ 60) V	9 mV	
		(60 ~ 150) V	0.03 V	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
교류 전력계	40311			
교류	<u></u> 압	(50 ~ 60) Hz		미터 교정기, 전류코일
		(150 ~ 300) V	0.05 V	전류 변환기 / TS-CI-E311
		(300 ~ 600) V	0.15 V	
		(600 ~ 1 000) V	0.2 V	
직류-	<u></u> 1류	$(0 \sim 1) \text{ mA}$	0.2 µА	
		(1 ~ 5) mA	0.5 µA	
		(5 ~ 10) mA	1 µА	
		(10 ~ 20) mA	3 µА	
		(20 ~ 50) mA	5 µА	
		(50 ~ 100) mA	9 µА	
		(100 ~ 200) mA	0.04 mA	
		(200 ~ 500) mA	0.08 mA	
		$(0.5 \sim 1) A$	0.14 mA	
		(1 ~ 2) A	0.7 mA	
		(2 ~ 5) A	1.4 mA	
		(5 ~ 10) A	3 mA	
		(10 ~ 20) A	16 mA	
		(20 ~ 50) A	76 mA	
		(50 ~ 100) A	0.16 A	
		(100 ~ 250) A	0.4 A	
		(250 ~ 500) A	0.8 A	
		(500 ~ 1 000) A	1.8 A	
교류	<u></u> 크류	(50 ~ 60) Hz		
		(1 ~ 5) mA	2.0 µA	
		(5 ~ 10) mA	4.0 μA	
		(10 ~ 20) mA	8.0 μΑ	
		(20 ~ 50) mA	12 μΑ	
		(50 ~ 100) mA	18 μΑ	
		(100 ~ 200) mA	92 μΑ	
		(200 ~ 500) mA	0.15 mA	
		(0.5 ~ 1) A	0.24 mA	
		(1 ~ 2) A	0.8 mA	
		(2 ~ 5) A	1.7 mA	
		(5 ~ 10) A	3 mA	
		(10 ~ 20) A	11 mA	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
교류 전력계	40311		(= 1 + 20 %)	
교류전류		(60 Hz)		미터 교정기, 전류코일
		(20 ~ 50) A	78 mA	전류 변환기 / TS-CI-E311
		(50 ~ 100) A	0.16 A	
		(100 ~ 250) A	0.4 A	
		(250 ~ 500) A	0.8 A	
		(500 ~ 1 000) A	1.8 A	
전력		(50 ~ 60) Hz		
		60 W	26 mW	
		(60 ~ 120) W	0.05 W	
		(120 ~ 240) W	0.08 W	
		(240 ~ 600) W	0.28 W	
		(600 ~ 1 200) W	0.5 W	
		(1 200 ~ 2 400) W	0.9 W	
		(2 400 ~ 4 800) W	4.6 W	
		(4 800 ~ 7 200) W	6.2 W	
		(7 200 ~ 12 000) W	7 W	
		(12 000 ~ 24 000) W	10 W	
역률		(50 ~ 60) Hz		
		LEAD (0.1 ~ 1)	6.1×10^{-4}	
		LAG (0.1 ~ 1)	6.1×10^{-4}	
교류 전압계/실효치	40318			
교류 전압		2 mV		미터 교정기
		40 Hz ~ 10 kHz	7.0 μV	/TS-CI-E318
		(2 ~ 20) mV		
		40 Hz ~ 10 kHz	0.01 mV	
		(20 ~ 100) mV		
		40 Hz	0.02 mV	
		40 Hz ~ 10 kHz	0.01 mV	
		(20 ~ 50) kHz	0.02 mV	
		(50 ~ 100) kHz	0.05 mV	
		(100 ~ 200) kHz	0.09 mV	
		(200 ~ 500) kHz	0.17 mV	
		(0.5 ~ 1) MHz	0.32 mV	

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
교류 전압계/실효치	40318		(LM L 7 30 k)	
교류 전압		(0.1 ~ 1) V		미터 교정기
		40 Hz	0.12 mV	/TS-CI-E318
		40 Hz ~ 20 kHz	0.07 mV	
		(20 ~ 50) kHz	0.09 mV	
		(50 ~ 100) kHz	0.13 mV	
		(100 ~ 200) kHz	0.43 mV	
		(200 ~ 500) kHz	1.3 mV	
		(0.5 ~ 1) MHz	2.0 mV	
		(1 ~ 10) V		
			1.2 mV	
			0.7 mV	
			0.9 mV	
			1.2 mV	
			3.3 mV	
			13 mV	
		(0.5 ~ 1) MHz	19 mV	
		(10 ~ 100) V		
			12 mV	
		40 Hz ~ 20 kHz	7 mV	
			11 mV	
			19 mV	
		(100 ~ 1 000) V		
		55 Hz	0.08 V	
		55 Hz ~ 1 kHz	0.08 V	

404. 기타 직류 및 저주파 측정

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
멀티미터 교정기	40403			
직후	구전압	(0 ~ 100) mV	1.5 μV	디지털 멀티미터
		$(0.1 \sim 1)$ mV	9 μV	/TS-CI-E403
		(1 ~ 10) V	0.08 mV	
		(10 ~ 100) V	0.9 mV	
		(100 ~ 1 000) V	11 mV	
亚生	구전압	40 Hz		
		(1 ~ 100) mV	17 μV	
		(0.1 ~ 1) V	0.10 mV	
		(1 ~ 10) V	1.0 mV	
		(10 ~ 100) V	11 mV	
		50 Hz		
		(100 ~ 1 000) V	0.15 V	
		40 Hz ~ 1 kHz		
		(0 ~ 100) mV	17 μV	
		(0.1 ~ 1) V	0.10 mV	
		(1 ~ 10) V	1.0 mV	
		(10 ~ 100) V	11 mV	
		50 Hz ~ 1 kHz		
		(100 ~ 1 000) V	0.15 V	
		1 kHz ~ 20 kHz		
		(0 ~ 100) mV	27 μV	
		(0.1 ~ 1) V	0.23 mV	
		(1 ~ 10) V	2.3 mV	
		(10 ~ 100) V	24 mV	
		20 kHz ~ 50 kHz		
		(0 ~ 100) mV	61 μV	
		(0.1 ~ 1) V	0.57 mV	
		(1 ~ 10) V	5.7 mV	
		(10 ~ 100) V	57 mV	

404. 기타 직류 및 저주파 측정

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
멀티미터 교정기	40403	50 kHz ~ 100 kHz		
교류전압		(0 ~ 100) mV	80 µV	디지털 멀티미터
		(0.1 ~ 1) V	0.58 mV	/TS-CI-E403
		(1 ~ 10) V	5.8 mV	
		(10 ~ 100) V	60 mV	
직류전류		(0 ~ 100) μA	13 nA	
		$(0.1 \sim 1) \text{ mA}$	44 nA	
		(1 ~ 10) mA	0.48 μΑ	
		(10 ~ 100) mA	7.3 µА	
		(0.1 ~ 1) A	0.23 mA	
		(1 ~ 10) A	6.3 mA	
		(10 ~ 30) A	20 mA	
교류전류		40 Hz ~ 1 kHz		
		(29 ~ 100) µA	39 nA	
		$(0.1 \sim 1) \text{ mA}$	0.36 µА	
		(1 ~ 10) mA	3.6 µА	
		(10 ~ 100) mA	36 μA	
		(0.1 ~ 1) A	0.50 mA	
		(1 ~ 10) A	9.5 mA	
 저항		(0 ~ 10) Ω	0.13 mΩ	
710		$(10 \sim 100) \Omega$	1.1 mΩ	
		$(0.1 \sim 1) \text{ k}\Omega$	11 mΩ	
		(1 ~ 10) kΩ	0.11 Ω	
		(10 ~ 100) kΩ	1.1 Ω	
		(0.1 ~ 1) MΩ	14 Ω	
		(1 ~ 10) MΩ	0.24 kΩ	
		(10 ~ 100) MΩ	15 kΩ	
누설전류 시험기	40416			
직류전압		(0 ~ 30) V	0.01 V	미터 교정기,
		(30 ~ 300) V	0.1 V	디지털 멀티미터
				/TS-CI-E416
교류전압		60 Hz ~ 1 kHz		
		(0.1 ~ 30) V	0.01 V	
		(30 ~ 300) V	0.1 V	

404. 기타 직류 및 저주파 측정

404. 기타 작류 및 서구파 극성 측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
누설전류 시험기	40416		(2,7,2,7,2,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,	
직류전류		(0 ~ 100) μA	0.1 μΑ	미터 교정기,
		(0.1 ~ 1) mA	0.001 mA	디지털 멀티미터
		(1 ~ 50) mA	0.01 mA	/TS-CI-E416
교류전류		60 Hz ~ 1 kHz		
		(0 ~ 100) μA	0.1 μΑ	
		(0.1 ~ 1) mA	0.001 mA	
		(1 ~ 10) mA	0.01 mA	
		(10 ~ 50) mA	0.02 mA	
출력저항		(1 ~ 5) kΩ	1 Ω	
아날로그/디지털 멀티미터	40419			
직류전압		(±)		
		(0 ~ 20) mV	0.6 μV	미터 교정기
		(20 ~ 100) mV	1.2 μV	/TS-CI-E419
		(0.1 ~ 1) V	6 µV	
		(1 ~ 2) V	0.02 mV	
		(2 ~ 5) V	0.03 mV	
		(5 ~ 10) V	0.04 mV	
		(10 ~ 20) V	0.1 mV	
		(20 ~ 50) V	0.4 mV	
		(50 ~ 100) V	0.6 mV	
		(100 ~ 200) V	3 mV	
		(200 ~ 500) V	5 mV 8 mV	
		(500 ~ 1 000) V	O IIIV	
교류전압		40 Hz		
- 11 2 8		$(0 \sim 100) \text{ mV}$	17 μV	
		(0.1 ~ 1) V	0.12 mV	
		(1 ~ 10) V	1.2 mV	
		(10 ~ 100) V	12 mV	
		(100 ~ 1 000) V	0.08 V	
		40 Hz ~ 20 kHz		
		(0 ~ 100) mV	14 μV	
		(0.1 ~ 1) V	0.07 mV	
		(1 ~ 10) V	0.7 mV	
		(10 ~ 100) V	7 mV	

404. 기타 직류 및 저주파 측정

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
아날로그/디지털 멀티미터	40419		(2,7,2,7,2,3,7)	
교류전	라	55 Hz ~ 1 kHz		미터 교정기
		(100 ~ 1 000) V	0.09 V	/TS-CI-E419
		(20 ~ 50) kHz		
		$(0 \sim 100) \text{ mV}$	21 μV	
		$(0.1 \sim 1) \text{ V}$	0.09 mV	
		(1 ~ 10) V	0.9 mV	
		(10 ~ 100) V	11 mV	
		(50 ~ 100) kHz		
		$(0 \sim 100) \text{ mV}$	49 µV	
		(0.1 ~ 1) V	0.13 mV	
		$(1 \sim 10) \text{ V}$	1.2 mV	
		(10 ~ 100) V	19 mV	
		(100 ~ 200) kHz		
		(0 ~ 100) mV	90 μV	
		(0.1 ~ 1) V	0.43 mV	
		(1 ~ 10) V	3.4 mV	
		(200 ~ 500) kHz		
		(0 ~ 100) mV	0.17 mV	
		(0.1 ~ 1) V	1.3 mV	
		(1 ~ 10) V	0.013 V	
직류전	2	(±)		
거개신		(Δ / 100) μA	10 nA	
		(0.1 ~ 1) mA	42 nA	
		$(1 \sim 10) \text{ mA}$	0.40 μA	
		$(10 \sim 100) \text{ mA}$	5.3 μA	
		$(0.1 \sim 1) \text{ A}$	80 µA	
		(1 ~ 3) A	0.85 mA	
		(3 ~ 10) A	2.7 mA	
교류전	류	40 Hz		
		1 mA	0.21 μΑ	
		(1 ~ 10) mA	2.1 μΑ	
		(10 ~ 100) mA	19 µА	
		(0.1 ~ 1) A	0.28 mA	

404. 기타 직류 및 저주파 측정

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
아날로그/디지털 멀티미터	40419			
교류전	류	40 Hz ~ 1 kHz		미터 교정기
		1 mA	0.16 µА	/TS-CI-E419
		(1 ~ 10) mA	1.6 µА	
		(10 ~ 100) mA	14 μΑ	
		(0.1 ~ 1) A	0.28 mA	
		(1 ~ 3) A	1.0 mA	
		(3 ~ 10) A	2.9 mA	
		(1 ~ 10) kHz		
		1 mA	1.8 µA	
		(1 ~ 10) mA	16 μΑ	
		(10 ~ 100) mA	0.12 mA	
		(0.1 ~ 1) A	7.0 mA	
저	항	(0 ~ 10) Ω	0.23 mΩ	
		(10 ~ 100) Ω	$1.2~\text{m}\Omega$	
		(0.1 ~ 1) kΩ	9 mΩ	
		(1 ~ 10) kΩ	0.09 ♀	
		(10 ~ 100) kΩ	1.4 Ω	
		(0.1 ~ 1) MΩ	17 Ω	
		(1 ~ 10) MΩ	0.44 kΩ	
파형측정기	40421			
직류전	압	(±)		미터교정기,
		(1 ~ 6) mV	42 μV	디지털멀티미터
		(6 ~ 12) mV	44 μV	/TS-CI-E421
		(12 ~ 30) mV	52 μV	
		(30 ~ 60) mV	64 μV	
		(60 ~ 120) mV	0.13 mV	
		(120 ~ 300) mV	0.19 mV	
		(0.3 ~ 0.6) V	0.72 mV	
		(0.6 ~ 1.2) V	0.84 mV	
		(1.2 ~ 3) V	1.4 mV	
		(3 ~ 6) V	2.6 mV	
		(6 ~ 12) V	11 mV	
		(12 ~ 30) V	15 mV	
		(30 ~ 60) V	26 mV	
		(60 ~ 120) V	82 mV	

404. 기타 직류 및 저주파 측정

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
파형측정기	40421			
교류전압		1 kHz		미터교정기,
		(1 ~ 3) mV	42 μV	디지털멀티미터
		(3 ~ 6) mV	44 μV	/TS-CI-E421
		(6 ~ 12) mV	50 μV	
		(12 ~ 30) mV	64 μV	
		(30 ~ 60) mV	88 µV	
		(60 ~ 120) mV	0.17 mV	
		(120 ~ 300) mV	0.30 mV	
		(0.3 ~ 0.6) V	0.84 mV	
		(0.6 ~ 1.2) V	1.2 mV	
		(1.2 ~ 3) V	2.6 mV	
		(3 ~ 6) V	5.0 mV	
		(6 ~ 12) V	12 mV	
		(12 ~ 30) V	25 mV	
		(30 ~ 60) V	49 mV	
		(60 ~ 120) V	0.12 V	
대역폭		600 mV		
		50 kHz	8 mV	
		50 kHz ~ 1 MHz	14 mV	
		(1 ~ 10) MHz	18 mV	
		(10 ~ 1 000) MHz	19 mV	
타임 마카		10 ns	0.62 ps	
		(10 ~ 100) ns	6.2 ps	
		(0.1 ~ 1) μs	62 ps	
		(1 ~ 10) μs	0.62 ns	
		(10 ~ 100) μs	6.2 ns	
		$(0.1 \sim 1)$ ms	62 ns	
		$(1 \sim 10)$ ms	0.62 µs	
		(10 ~ 100) ms	6.2 µs	
		(0.1 ~ 1) s	62 µs	
		(1 ~ 10) s	0.62 ms	
기준신호(전압)		(0.1 ~ 1) kHz		
		(0.1 ~ 5) V	2 mV	
		(5 ~ 10) V	0.02 V	

404. 기타 직류 및 저주파 측정

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
파형측정기	40421		(
기준신호(전압)		(1 ~ 10) kHz		미터교정기,
		(0.1 ~ 1) V	2 mV	디지털멀티미터
		(1 ~ 5) V	3 mV	/TS-CI-E421
		(5 ~ 10) V	0.02 V	
기준신호(주파수)		1 Hz ~ 2 kHz	0.7 Hz	
입력 임피던스		50 Ω	7 mΩ	
		1 ΜΩ	0.7 kΩ	
전압 전류 기록계	40424			
직류전압		(±)		미터 교정기
		(0 ~ 20) mV	1 μV	/TS-CI-E424
		(20 ~ 100) mV	2 μV	
		(0.1 ~ 1) V	0.01 mV	
		(1 ~ 20) V	0.1 mV	
		(20 ~ 100) V	1 mV	
		(100 ~ 1 000) V	0.01 V	
직류전류		(±)		
		(0 ~ 10) mA	1 μΑ	
		(10 ~ 50) mA	4 μΑ	
		(50 ~ 100) mA	9 µА	
		(100 ~ 200) mA	0.03 mA	
		(200 ~ 500) mA	0.06 mA	
		(0.5 ~ 1) A	0.10 mA	
		(1 ~ 10) A	2.6 mA	

501.접촉식 온도

측정량/장비	분류번호	교정범위	측정불확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
온도 발생장치; 오븐, 전기로, 액체항온조, 빙점조, 드라이블럭교정기 등	50101	0 ℃ (-95 ~ 420) ℃	0.01 ℃ 0.02 ℃	표준백금저항온도계 /TS-CI-T01
온도 지시계; 지시/기록/조절계, 온도 교정기 등 지시/기록/조절계 (센서포함)	50102	-196 ℃ (-80 ~ 420) ℃ -196 ℃ (-80 ~ 420) ℃	0.03 °C 0.03 °C 0.11 °C 0.11 °C	표준백금저항온도계, 미터교정기, /TS-CI-T02
저항식 온도계; 백금저항온도계, 측온저항체, 써미스터 등	50104	-196 ℃ (-80 ~ 420) ℃	0.02 °C 0.03 °C	표준백금저항온도계 /TS-CI-T04
열팽창식 온도계; 바이메탈 온도계, 기체 또는 액체 충만식 온도계 등 바이메탈 온도계	50105	(-80 ~ 0) ℃ (0 ~ 120) ℃ (120 ~ 250) ℃ (250 ~ 420) ℃	0.6 °C 0.3 °C 0.6 °C 1.5 °C	표준백금저항온도계 /TS-CI-T05
온도 변환기	50107	(-80 ~ 100) ℃ (100 ~ 250) ℃ (250 ~ 420) ℃	0.09 ℃ 0.12 ℃ 0.14 ℃	표준백금저항온도계 /TS-CI-T07

503. 습도

503. 습도		T	측정불확도	Ī
측정량/장비	분류번호	교정범위	국정출확도 (신뢰수준 약 95 %)	사용표준/측정방법 등
상대습도 습도계; 고분자 박막, 모발 등	50302			기준노점습도계
				/TS-CI-H01, TS-CI-H02
(온도)		(-40 ~ 0) ℃	0.5 ℃	
		(0 ~ 70) ℃	0.6 ℃	
		(70 ~ 100) ℃	1.2 ℃	
		(100 ~ 140) ℃	2.4 ℃	
(상대습도)		(10 ~ 15) % R.H.	2.4 % R.H.	
		(15 ~ 30) % R.H.	2.1 % R.H.	
		(30 ~ 40) % R.H.	2.2 % R.H.	
		(40 ~ 60) % R.H.	2.3 % R.H.	
		(60 ~ 80) % R.H.	2.4 % R.H.	
		(80 ~ 95) % R.H.	2.5 % R.H.	
온·습도 기록계; 자기온습도 기록계 등	50304			기준노점습도계
[도 도 기구계, 시기트[]도 기구계 중 	50504			/TS-CI-H04
(온도)		(0 ~ 50) ℃	0.8 ℃	, is or nor
, _ ,		, , ,		
(상대습도)		(10 ~ 95) % R.H.	4.3 % R.H.	
노점/상대습도 변환기	50305			기준노점습도계
				/TS-CI-H05
		(10 ~ 15) % R.H.	2.4 % R.H.	
		(15 ~ 40) % R.H.	2.2 % R.H.	
		(40 ~ 60) % R.H.	2.3 % R.H.	
		(60 ~ 80) % R.H.	2.4 % R.H.	
		(80 ~ 95) % R.H.	2.5 % R.H.	
습도 발생장치; 이압력식/	50306			기준노점습도계
이온도식/분류식 습도발생장치,	30300			/TS-CI-H06
항온항습기 등				7 10 01 1100
항온항습기 항온항습기				
(온도)		(−40 ~ 100) ℃	0.5 ℃	
(21)		(100 ~ 180) ℃	1.2 °C	
		100/ 0	1.2	
(상대습도)		(10 ~ 20) % R.H.	2.6 % R.H.	
		(20 ~ 30) % R.H.	2.4 % R.H.	
		(30 ~ 40) % R.H.	2.3 % R.H.	
		(40 ~ 60) % R.H.	2.2 % R.H.	
		(60 ~ 70) % R.H.	2.1 % R.H.	
		(70 ~ 80) % R.H.	2.5 % R.H.	
		(80 ~ 95) % R.H.	2.7 % R.H.	